Letters to the Editor

Staphylococcus aureus colonization is associated with wheeze and asthma among US children and young adults

To the Editor:

Asthma prevalence has been on the rise in the past decades, although its drivers are incompletely understood.1,2 While exposure to allergens and gram-negative endotoxin is associated with asthma and wheeze,3 the link between other microbial exposures, which stimulate the human immune system in myriad ways, and the risk of asthma remains unclear. One microbe, the gram-positive bacterium *Staphylococcus aureus*, exacerbates atopic eczema and contributes to development of chronic rhinosinusitis with nasal polyposis via a Th2-biased immune response to bacterial superantigen proteins such as staphylococcal enterotoxins (SE),4 suggesting that *S aureus* could also affect Th2-driven airway disease.

Interestingly, although 1 study found no significant associations between *S aureus* nasal colonization in neonates and subsequent asthma outcomes,2 other studies found evidence for a diagnosis of asthma being a risk factor for *S aureus* colonization, including 1 study using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2002.6,7 Building on these findings, we evaluated *S aureus* nasal colonization as a risk factor for a range of asthma-associated outcomes, including diagnosis, symptoms, and exacerbations, among the US population using data from NHANES 2001-2004. We also examined the effect of age on relationships between *S aureus* colonization and asthma- and wheeze-related outcomes.

NHANES, a nationally representative survey, includes data on demographic characteristics, health status, and nutrition of noninstitutionalized US residents ages 1 to 85 years old. Details on the conduct of NHANES surveys are available online at http://www.cdc.gov/nchs/nhanes.htm. This analysis includes respiratory outcomes related to self-reported symptoms of wheeze and asthma in the past year. Population-standardized prevalence rates were calculated, and unadjusted and adjusted associations between *S aureus* nasal colonization and asthma and wheeze outcomes were examined using logistic regression modeling to estimate odds ratios (OR) using Stata 13.1 (Stata, College Station, Tex). Details on these methods are available in this article’s Online Repository at www.jacionline.org.

In NHANES 2001-2004, an estimated 28.4% (95% CI: 27.3%, 29.6%) of the population was nasally colonized with *S aureus*. Table I provides prevalence rates of asthma and wheeze outcomes in the NHANES 2001-2004 cohort among the 16,234 participants 6 to 85 years old, as described in this article’s Online Repository at www.jacionline.org. In the analysis of associations between *S aureus* and outcomes related to wheeze and asthma, age appeared to modify the effects of exposure, with positive associations observed among younger individuals (~6-30-year-olds) and negative associations observed among older individuals (~31-85-year-olds) (Fig E1). *S aureus* colonization in the younger group was associated with increased population prevalence rates for respiratory outcomes (Fig E2).

Table II displays models adjusted for *a priori* covariates and demonstrates that, for most outcomes, statistically significant interactions between *S aureus* colonization and age category were observed. For example, *S aureus* colonized individuals had a significant 1.52-fold (95% CI: 1.15, 2.00) increase in odds of nocturnal wheeze compared with noncolonized individuals among 6- to 30-year-olds, but *S aureus*-colonized individuals had a nonsignificant decrease in odds (OR 0.79, 95% CI: 0.53, 1.18) among 31- to 85-year-olds, with interactive effects present between *S aureus* colonization and age category (*P* = .01). Results were similar between unadjusted and adjusted models (Table E1).

In this analysis of NHANES data, representative of the US population, *S aureus* nasal colonization was associated with increased risk of asthma prevalence, symptoms, and exacerbations in children and young adults. No associations were seen for most asthma-related outcomes among adults aged 31 to 85. Together, these findings implicate *S aureus* colonization in the pathogenesis of asthma prevalence and morbidity in children and young adults. While 2 prior epidemiologic studies evaluating risk factors for *S aureus* colonization identified asthma as a factor among many,5,6 no previous studies have evaluated whether *S aureus* colonization is a risk factor for asthma-related symptoms and exacerbations and whether these relationships are modified by age. Our hypothesized causal direction from *S aureus* colonization to asthma diagnosis and morbidity is biologically plausible. Numerous human and animal studies suggest that exposure to intrinsic or secreted components of *S aureus* (eg, peptidoglycan, SE) may exacerbate upper respiratory disease via local or systemic Th2-driven host immune responses,6,8 which could contribute to exacerbation or progression to lower airway disease.

This is the first study to note differences in associations between *S aureus* colonization and asthma outcomes among younger versus older participants, which we discuss further in this article’s Online Repository at www.jacionline.org. Because host responses, including atopic status, may mediate the relationships between *S aureus* colonization and asthma and wheeze, children and young adults, who typically are more atopic, could be more susceptible to the respiratory effects of *S aureus* than older adults. However, atopic status was not measured in NHANES 2001-2004, precluding our ability to explore this host factor as a potential mediator of the observed relationships. It is also possible that the associations between *S aureus* colonization and asthma outcomes were only observed in younger individuals because of misclassification of asthma in older adults. For example, adults are more likely to have comorbidities that can be mistaken for asthma, such as chronic obstructive pulmonary disease and congestive heart failure. However, removing individuals with heart disease, chronic bronchitis, and emphysema did not affect the findings (data not shown).

Like other NHANES analyses, this study is limited by its cross-sectional study design, precluding testing the causal direction for observed associations. Incomplete and biased measurement of staphylococcal enterotoxins in NHANES 2001-2004 limited our ability to analyze whether the relationship between *S aureus* and asthma outcomes differed according to the SE status of the colonizing isolate. Another potential limitation of this work is the assessment of only nasal colonization, because *S aureus* also may colonize skin, pharyngeal,
and other sites.9 However, \textit{S. aureus} nasal colonization often shows a high correlation with skin carriage.9 Another limitation of this study is the potential for reverse causation, in which lower respiratory disease could be a risk factor for \textit{S. aureus} colonization, rather than vice versa. For example, lower respiratory disease or symptoms could cause more contact with health care facilities, and increased contact with health care facilities could promote \textit{S. aureus} colonization. However, our findings were robust to adjustment for the number of reported health care visits.

\begin{table}
\centering
\caption{Participant characteristics and prevalence rates for \textit{S. aureus} colonization among 6- to 85-year-old NHANES participants, 2001-2004.}
\begin{tabular}{|p{2cm}|p{2cm}|p{2cm}|p{2cm}|p{2cm}|}
\hline
\textbf{Row} & \textbf{Characteristic} & \textbf{Sample} & \textbf{S. aureus colonized} & \textbf{Not S. aureus colonized} & \textbf{X}^2 \\
\hline
I & Total & 16,234 & 28.4% [27.3%, 29.6%] & 71.6% [70.4%, 72.7%] & \textless .001 \\
II & Sex & & & & \\
& Female & 8,337 (51.4%) & 47.6% [45.1%, 50.1%] & 54.1% [52.9%, 55.3%] & \\
& Male & 7,897 (48.6%) & 52.4% [50.0%, 54.9%] & 45.9% [44.7%, 47.1%] & \\
III & Ethnicity category & & & & \textless .001 \\
& NH white & 6,980 (43.0%) & 75.8% [71.7%, 79.3%] & 71.4% [66.5%, 75.8%] & \\
& NH black & 4,190 (25.8%) & 8.5% [6.4%, 11.1%] & 12.2% [9.7%, 15.2%] & \\
& Mex Am & 3,985 (24.6%) & 6.8% [5.2%, 8.7%] & 7.7% [5.6%, 10.4%] & \\
& Other/multi & 476 (2.9%) & 3.9% [3.0%, 5.0%] & 4.2% [3.2%, 5.5%] & \\
& Hispanic & 603 (3.7%) & 5.1% [3.2%, 8.2%] & 4.5% [2.9%, 7.1%] & \\
IV & BMI category & & & & .11 \\
& Underweight & 325 (2.0%) & 1.7% [1.1%, 2.6%] & 1.9% [1.5%, 2.3%] & \\
& Normal & 6,665 (41.1%) & 29.5% [26.7%, 32.4%] & 31.4% [29.9%, 32.9%] & \\
& Overweight & 4,452 (27.4%) & 32.6% [30.2%, 35.0%] & 34.0% [32.3%, 35.8%] & \\
& Obese & 4,792 (29.5%) & 36.2% [33.4%, 39.1%] & 32.8% [31.1%, 34.6%] & \\
V & Smoking in the home* & & & & .01 \\
& Yes & 3,371 (21.0%) & 18.4% [16.1%, 20.9%] & 22.5% [19.9%, 25.3%] & \\
& No & 12,689 (79.0%) & 81.6% [79.1%, 83.9%] & 77.5% [74.7%, 80.1%] & \\
VI & Flu, pneumonia or ear infection‡ & & & & .98 \\
& Yes & 772 (5.1%) & 4.9% [3.8%, 6.3%] & 4.5% [3.9%, 5.3%] & \\
& No & 14,398 (94.9%) & 95.1% [93.7%, 96.2%] & 95.5% [94.7%, 96.1%] & \\
\hline
\hline
\textbf{Row} & \textbf{Outcome} & \textbf{n (%)} & \textbf{Population % [95% CI]} & \textbf{Population % [95% CI]} & \textbf{P value} \\
\hline
\hline
\textbf{Wheeze outcomes:} & & & & & \\
XI & Wheeze in the past year* & 2,091 (12.9%) & 14.9% [12.9%, 17.2%] & 15.2% [14.0%, 16.5%] & .57 \\
XII & Wheeze during exercise* & 1,011 (6.2%) & 6.3% [5.3%, 7.4%] & 7.0% [6.2%, 7.9%] & .92 \\
XIII & Nocturnal wheeze* & 922 (6.1%) & 6.6% [5.4%, 8.2%] & 6.5% [5.7%, 7.3%] & .21 \\
XIV & Emergency room visit for wheezing‡ & 785 (4.9%) & 5.8% [4.6%, 7.4%] & 5.0% [4.3%, 5.9%] & .05 \\
XV & Wheeze limits activities‡ & 779 (4.9%) & 5.6% [4.4%, 7.1%] & 5.5% [4.6%, 6.4%] & .48 \\
XVI & Medication for wheezing‡ & 562 (3.7%) & 3.2% [2.4%, 4.2%] & 4.2% [3.4%, 5.2%] & .23 \\
XVII & Miss work or school due to wheeze‡ & 408 (2.6%) & 1.7% [1.1%, 2.7%] & 1.9% [1.5%, 2.4%] & .15 \\
\hline
\hline
\textbf{Asthma outcomes:} & & & & & \\
XVIII & Asthma diagnosis ever* & 2,169 (13.4%) & 12.9% [11.4%, 14.6%] & 11.8% [10.7%, 12.9%] & .05 \\
XIX & Current asthma* & 1,315 (8.1%) & 7.7% [6.4%, 9.3%] & 7.3% [6.4%, 8.3%] & .19 \\
XX & Asthma attack in past year‡ & 672 (4.4%) & 4.6% [3.4%, 6.1%] & 3.5% [3.0%, 4.0%] & .02 \\
XXI & Emergency room visit for asthma§ & 206 (1.4%) & 1.2% [0.7%, 1.9%] & 0.8% [0.6%, 1.1%] & .13 \\
\hline
\end{tabular}
\end{table}

9 The sample column displays absolute numbers and percentages. \textit{S. aureus} rates are standardized to the population distribution. Due to rounding, percents may not add up to 100%. BMI category is based on percentile assignment for ages 1 to 20 and BMI for ages 21 to 85. BMI, Body mass index; Mex Am, Mexican American; NH, non-Hispanic; PIR, poverty income ratio. *≤1% missing data. †1% to 4% missing data. ‡5% to 7% missing data. §8% to 10% missing data.
TABLE II. Adjusted associations between \textit{S aureus} nasal colonization and asthma and wheeze

<table>
<thead>
<tr>
<th>Outcomes, OR [95% CI]</th>
<th>Whole population (age 6 to 85 y)</th>
<th>Age 6 to 30 y</th>
<th>Age 31 to 85 y</th>
<th>\textit{S aureus} and age interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size n = 16,234</td>
<td>n = 8,703</td>
<td>n = 7,531</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wheeze outcomes:

- \textbf{Wheeze in the past year} †: 1.02 [0.87, 1.20] \textit{P} < 0.05
- \textbf{Wheeze during exercise} i: 1.00 [0.82, 1.19] \textit{P} = 0.99
- \textbf{Nocturnal wheeze} i: 1.05 [0.84, 1.34] \textit{P} < 0.05
- \textbf{Emergency room visit for wheezing} i: 1.28 [1.00, 1.62] \textit{P} = 0.03

\textbf{Wheeze limits activities} i: 1.11 [0.89, 1.38] \textit{P} < 0.05

\textbf{Medication for wheezing} †: 0.93 [0.75, 1.14] \textit{P} < 0.05

\textbf{Miss work or school due to wheeze} i,f: 1.03 [0.77, 1.39] \textit{P} < 0.05

\textbf{Asthma diagnosis ever} i,f: 1.07 [0.92, 1.23] \textit{P} < 0.05

\textbf{Current asthma} i,f: 1.08 [0.87, 1.35] \textit{P} < 0.05

\textbf{Asthma attack in past year} i,f: 1.37 [1.03, 1.83] \textit{P} < 0.05

\textbf{Emergency room visit for asthma} i: 1.44 [0.89, 2.31] \textit{P} < 0.05

\textbf{Medication for asthma} †: 0.93 [0.75, 1.14] \textit{P} < 0.05

OR are (ods for colonized) (ods for noncolonized).

Adjusted models use survey weighting and account for gender, ethnicity, obesity, smoking in the home, episode of flu, number of health care visits, poverty income ratio, and household size.

Whole-population and within-age-stratum models use age as a continuous variable.

Models with the \textit{S aureus} age interaction term use age as a binary variable.

Boldface: \textit{P} < 0.05. *\textit{P} < 0.05; **\textit{P} < 0.01.

†5% missing data.

i1% to 4% missing data.

f5 to 10% missing data.

†Excluding 2,120 participants over 65 years old.

Prospective studies are needed to unpack not only the direction of causation, but also the host factors and underlying inflammatory mechanisms by which \textit{S aureus} is associated with wheeze and asthma outcomes. Whether the epidemic of \textit{S aureus} may drive the concurrent epidemic of asthma is unknown, but understanding the role of \textit{S aureus} on respiratory outcomes could identify novel intervention efforts to reduce the burden of disease in younger populations.

We are grateful to Dr Corinne Keet for her assistance and thank faculty in the Center for Childhood Asthma in the Urban Environment for their technical expertise.

\textbf{Meghan F. Davis, PhDf}

\textbf{Roger D. Peng, PhDf}

\textbf{Meredith C. McCormack, MDf,g,*}

\textbf{Elizabeth C. Matsui, MDf,d,*}

From fthe Department of Epidemiologic Health Sciences and gthe Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md; dthe School of Medicine, Johns Hopkins University, Baltimore, Md; and ethe Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md. E-mail: mdavis65@jhu.edu.

fThese authors contributed equally to this work.

No specific sources of funding were used for this data analysis. The authors were supported by grants from the Johns Hopkins Fisher Center Discovery Program (004MAT2014 to E.M. and M.D.), the National Institute of Environmental Health Sciences (NEIHS; T32ES07141-29 to M.D.; R21ES024021 and P01ES018176 to M.M.; P50ES019503, P01ES018176, P01ES018181, and R01ES019560 to E.M.), the Environmental Protection Agency (EPA; R832139 and STAR Grant RD83451501 to E.M.), and the National Institute of Allergy and Infectious Diseases (R01AI070630 and U01AI083238 to E.M.).

Disclosure of potential conflict of interest: M. F. Davis has received research support from the Johns Hopkins Fisher Center Discovery Program (004MAT2014), the NEIHS (T32ES07141-29), and Sogeval and has received travel support from the American College of Veterinary Dermatology. R. D. Peng has received research support from the National Institutes of Health (R01ES019560) and has received consultancy fees from Health Effects Institute. M. C. McCormack has received research support from the NEIHS (R21ES024021 NEIHS and EPA P01ES018176) and has received royalties from UpToDate. E. C. Matsui is a member of the EPA Science Advisory Board, has received consultancy fees from the EPA Expert Panel for Allergic Outcomes in Epidemiologic Research, is employed by Johns Hopkins University, and has received research support from the National Institutes of Health.

REFERENCES

Postmenopausal hormone therapy and asthma-related hospital admission

To the Editor:

There is considerable evidence that female sex hormones are involved in the asthma pathogenesis. Asthma is most prevalent in boys during childhood but after puberty it is more common in
METHODS

Study population

NHANES, a nationally representative survey conducted approximately every 2 years, includes data on demographic characteristics, health status, and nutrition of noninstitutionalized US residents ages 1 to 85 years old. Details on the conduct of NHANES surveys have previously been described and are available online at http://www.cdc.gov/nchs/nhanes.htm. This survey was approved by the NHANES Institutional Review Board/NCHS Research Ethics Review Board (IRB/ERB), and all participants gave written informed consent. Analysis was limited to participants age 6 to 85 years, precluding children under 5 years of age, due to the difficulties in diagnosing asthma in this age group.

Asthma outcomes

All participants were queried directly or by proxy (for participants ages 6 to 16 years old) regarding respiratory symptoms. This analysis includes respiratory outcomes related to self-reported symptoms of wheeze in the past 12 months: “Have you [has SP [Sample Person]] had wheezing or whistling in [your/his/her] chest?” (wheeze in the past year); “Has [your/SP’s] chest sounded wheezy during or after exercise or physical activity?” (wheeze during exercise); “How many times have you [SP] gone to the doctor’s office or the hospital emergency room for 1 or more of these attacks of wheezing or whistling?” (emergency room visit for wheezing); “How often, on average, has [your/SP’s] sleep been disturbed because of wheezing?” (nocturnal wheeze); “How much did [you/SP] limit [your/his/her] usual activities due to wheezing or whistling?” (wheeze limits activities); “Have you [SP] taken medication, prescribed by a doctor, for wheezing or whistling?” (medication for wheezing); and “How many days of work or school did [you/SP] miss due to wheezing or whistling?” (mis work or school due to wheeze). This analysis includes respiratory outcomes related to asthma: “Has a doctor or other health professional ever told [you/SP] that you have asthma?” (asthma diagnosis ever); “Do you/Does SP still have asthma?” (current asthma); “During the past 12 months, have you [SP] had an episode of asthma or an asthma attack?” (asthma attack in the past year); and “During the past 12 months, have you [SP] had to visit an emergency room or urgent care center because of asthma?” (emergency room visit for asthma). Where questions were asked within a subpopulation limited to those reporting symptoms, participants not reporting any symptoms were assigned a value of 0. When questions were reported as a number or on an ordinal scale, variables were standardized to 1 for “ever” and 0 for “never.”

S aureus measurement

Procedures for sampling and microbiological analysis of S aureus identified among participants in NHANES 2001-2004 have been previously described. Briefly, all examined participants between the ages of 6 and 85 submitted culturerte swabs (BD Diagnostics, Sparks, Md) from the anterior nares for culture and screening, using tube coagulase tests and Staphaurex agglutination assays (Remel, Lenexa, Kan).

Statistical analysis

Population-standardized prevalence rates were calculated using survey weighting and accounting for the multistage survey design, and unadjusted and adjusted associations between S aureus nasal colonization and asthma and wheeze outcomes were examined using logistic regression modeling to estimate ORs using Stata 13 (Stata, College Station, Tex). P values ≤0.05 were considered statistically significant. A priori, covariates included self-reported age; gender; ethnicity; smoking in the home; flu, pneumonia, or ear infection in the past year; number of health care visits in the past year; family income using the family poverty income ratio (PIR); the household size; and body mass index (BMI). These covariates were included in final models because they are known to be associated with S aureus colonization and asthma and/or wheeze. Measured BMI was converted based on Centers for Disease Control and Prevention cut-off values for adults to categories of obesity using the following categorization method: underweight (BMI below 18.5 kg/m²), normal (BMI 18.5-24.9 kg/m²), overweight (BMI 25.0-29.9 kg/m²), and obese (≥30.0 kg/m² and above). Percentile assignment for age and sex to categories of obesity was performed for children and youths aged 1 to 20 years old, using a previously described software package, using the following categorization method: underweight (<5th percentile), normal (5th percentile to <85th percentile), overweight (85th percentile to <95th percentile), and obese (≥95th percentile).

Potential age-dependency of relationships between colonization and asthma and wheeze outcomes was evaluated through exploratory data analysis, including stratification of analyses by age. Interactions between S aureus colonization and age were tested using categorical interaction terms in final statistical models (age ≤30 years vs >30 years, S aureus colonization). Interactions between S aureus colonization and continuous age also were calculated (NHANES variable ridageyr * S aureus colonization). Interactions between S aureus colonization and gender were evaluated.

RESULTS

Table I provides data on prevalence rates for asthma and wheeze outcomes in the NHANES 2001-2004 cohort among the 16,234 participants 6 to 85 years old (93% of 17,518 interviewed, and 100% of those examined) with complete data on S aureus nasal colonization and demographics. These data demonstrate that S aureus–colonized participants were slightly but significantly more likely to be male, non-Hispanic white, and come from a more affluent, nonsmoking household. Prevalence rates for S aureus nasal colonization differed according to age, with a rate estimate of 30.1% [95% CI: 27.8%, 32.5%] for participants aged 6 to 30 years old and 28.2% [26.8%, 29.7%] for participants aged 31 to 85 years old. Participants 6 to 30 years old were 48% [95% CI: 38%, 59%] more likely to be S aureus colonized than those 31 to 85 years old (P < .001).

We performed additional analyses and sensitivity tests to evaluate the robustness of our results. In addition to the analyses of interactive effects between S aureus colonization and categorical age presented in Table II and Table E1, we found statistically significant interactions between S aureus colonization and continuous age for the following outcomes: wheeze in the past year, wheeze during exercise, nocturnal wheeze, medication for wheezing, and missing work or school for wheeze. These interactive effects support the general conclusion that the relationship between S aureus colonization and respiratory outcomes varies by age, with a positive association observed in younger participants. Elimination of participants reporting heart disease or respiratory comorbidities such as emphysema and chronic bronchitis did not change the conclusions. Adjustment for program year (2001-02 vs 2003-04) also did not change the conclusions. Interactive effects with gender were explored using descriptive statistics, stratified models, and adjusted models with and without interaction terms. There was no evidence that the relationships between S aureus colonization and outcomes varied by gender (data not shown).

DISCUSSION

This is the first study to note differences in associations between S aureus colonization and asthma outcomes among children and young adults versus older participants. Several biologically plausible mechanisms could explain the observed relationships. First, because host responses, including specific IgE response and atopic status, may mediate the relationships between S aureus colonization and asthma and wheeze, further studies.
children and young adults, who typically are more atopic, could be more susceptible to the respiratory effects of \textit{S. aureus} than older adults. It is also possible that the differences in relationships between \textit{S. aureus} colonization and asthma and wheeze outcomes are due to a cohort effect. Specifically, it is possible that individuals who were born more recently, and therefore were children at the time when \textit{S. aureus} became more widespread, were more likely to develop specific IgE sensitization, which increased susceptibility to respiratory effects of \textit{S. aureus} colonization. As the children and young adults from 2001 to 2004 age, they may continue to be susceptible to respiratory effects from \textit{S. aureus} colonization even as older adults. Finally, host mucosal immune responses to microbial pathogens are known to change with age, with immune maturation continuing until age 4 or 6 years, and then immune senescence commencing in later adulthood. For example, Bisgaard et al, in studying neonatal \textit{S. aureus} colonization, found no association with cumulative outcomes to age 5 related to persistent wheeze, asthma, and related outcomes. It is possible that colonization with \textit{S. aureus} causes asthma in school-age children and young adults and/or perpetuates existing asthma in school-age children and young adults but does not cause asthma in young children who were colonized as neonates. Future studies are needed to evaluate whether these possible mechanisms explain how the association between \textit{S. aureus} and wheeze and asthma outcomes varies by age. These findings need to be replicated through prospective, longitudinal cohorts. Because this study was cross-sectional, and our finding of relationships between \textit{S. aureus} nasal colonization and asthma and wheeze outcomes could be due to reverse causation, future studies should test the effect of eradication of \textit{S. aureus} colonization on asthma. In addition, evaluation of bacterial factors such as presence and expression of SE genes, and host factors such as atopic status, should be included in future work. While the effect sizes we identified in this study were modest, because nearly a third of the US population is nasally colonized with \textit{S. aureus} at any given time, the risk conferred by \textit{S. aureus} colonization would affect a significant proportion of the US population.

REFERENCES

FIG E1. Smoothed associations between *S. aureus* colonization and asthma-related outcomes. Lowess curves depicting relationships between relative odds of respiratory outcomes for *S. aureus* colonization versus no *S. aureus* colonization (y axis) and age (x axis). ORs, which depict (odds for colonized)/(odds for non-colonized), were first generated by logistic regression modeling of the *S. aureus* colonization-respiratory outcome relationships and then the relationships between age and these ORs were depicted using Lowess smoothing.
FIG E2. Population prevalence rates for asthma-related outcomes among 6- to 30-year-olds according to *S. aureus* colonization status. Prevalence rates and confidence intervals were calculated using survey-weighted tabulation, and *P* values were calculated using Pearson *χ²* analysis.
TABLE E1. Unadjusted associations between *S. aureus* nasal colonization and asthma and wheeze outcomes, OR [95% CI]

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Whole population (age 6-85 y)</th>
<th>Age 6-30 y</th>
<th>Age 31-85 y</th>
<th>S. aureus and age interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample population, N (%)</td>
<td>n = 16,234</td>
<td>n = 8,703</td>
<td>n = 7,531</td>
<td></td>
</tr>
<tr>
<td>Wheeze outcomes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheeze in the past year§</td>
<td>1.04 [0.91, 1.20]</td>
<td>1.32 [1.06, 1.64]*</td>
<td>0.90 [0.73, 1.11]</td>
<td>P = .02</td>
</tr>
<tr>
<td>Wheeze during exercise†</td>
<td>1.00 [0.86, 1.18]</td>
<td>1.22 [0.93, 1.61]</td>
<td>0.86 [0.68, 1.08]</td>
<td>P = .07</td>
</tr>
<tr>
<td>Emergency room visit for wheezing‡</td>
<td>1.25 [1.01, 1.56]*</td>
<td>1.53 [1.17, 2.00]**</td>
<td>1.10 [0.73, 1.65]</td>
<td>P = .23</td>
</tr>
<tr>
<td>Nocturnal wheeze‡</td>
<td>1.14 [0.93, 1.41]</td>
<td>1.47 [1.11, 1.93]**</td>
<td>0.93 [0.66, 1.32]</td>
<td>P = .06</td>
</tr>
<tr>
<td>Wheeze limits activities†</td>
<td>1.07 [0.88, 1.31]</td>
<td>1.44 [1.12, 1.86]**</td>
<td>0.92 [0.70, 1.22]</td>
<td>P = .02</td>
</tr>
<tr>
<td>Medication for wheezing§</td>
<td>0.90 [0.76, 1.07]</td>
<td>1.46 [1.15, 1.85]**</td>
<td>0.66 [0.53, 0.81]**</td>
<td>P < .001</td>
</tr>
<tr>
<td>Miss work or school due to wheeze¶</td>
<td>1.15 [0.91, 1.45]</td>
<td>1.45 [1.11, 1.89]**</td>
<td>0.75 [0.43, 1.30]</td>
<td>P = .04</td>
</tr>
<tr>
<td>Asthma outcomes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma diagnosis ever†</td>
<td>1.15 [1.01, 1.33]*</td>
<td>1.23 [1.01, 1.50]*</td>
<td>1.04 [0.87, 1.24]</td>
<td>P = .19</td>
</tr>
<tr>
<td>Current asthma</td>
<td>1.14 [0.94, 1.39]</td>
<td>1.24 [0.96, 1.60]</td>
<td>1.02 [0.80, 1.30]</td>
<td>P = .20</td>
</tr>
<tr>
<td>Asthma attack in past year§</td>
<td>1.43 [1.10, 1.86]*</td>
<td>1.40 [0.96, 2.04]</td>
<td>1.38 [1.03, 1.86]*</td>
<td>P = .95</td>
</tr>
<tr>
<td>Emergency room visit for asthma¶</td>
<td>1.56 [0.93, 2.60]</td>
<td>1.77 [0.94, 3.33]</td>
<td>1.12 [0.53, 2.38]</td>
<td>P = .31</td>
</tr>
</tbody>
</table>

OR are (odds for colonized)/(odds for non-colonized).

All models use survey weighting.

Models with interaction terms treat age as a binary variable.

Boldface: *P < .05: *P < .05, **P < .01.

‡1% missing data.

§1% to 4% missing data.

¶5% to 7% missing data.

||8% to 10% missing data.

Excluding 2120 participants over age 65 years.