Writing from the Reader’s Perspective
(with a nod to Gopen)

Meghan F. Davis, DVM MPH PhD
Associate Professor, EHE
mdavis65@jhu.edu
The audience

- For whom are you writing?
 - The journal
 - Reviewers for the journal
 - Readers of the journal
 - The general scientific community

- How does this impact:
 - Framing of narrative
 - Target reading level
 - Discipline-centric language
Implications for framing

- What does the audience care about?
- What messages will best engage the audience? (What do they care about?)
Framing example

Science of the Total Environment

Author guidelines: “Science of the Total Environment is an international journal for publication of original research on the total environment, which includes the atmosphere, hydrosphere, biosphere, lithosphere, and anthroposphere.” [emphasis added]

First line of paper: “Indoor home environmental exposures to biotic material, particularly allergens and microbial endotoxin, are known to exacerbate allergic asthma among people with existing disease…” [emphasis added]

Narrative in science

Table 3 Comparison of the format of a typical scientific article with the structure of narrative in the folk-tale (the latter after Propp [1925] and Landau [1984, 1991])

<table>
<thead>
<tr>
<th>Format of a typical scientific article:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Abstract</td>
</tr>
<tr>
<td>• Introduction</td>
</tr>
<tr>
<td>• Materials and Methods</td>
</tr>
<tr>
<td>• Results</td>
</tr>
<tr>
<td>• Discussion</td>
</tr>
<tr>
<td>• Conclusions</td>
</tr>
<tr>
<td>• Acknowledgments</td>
</tr>
<tr>
<td>• Literature Cited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure of narrative in the folk-tale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hero met → problem introduced → “quest” required → first test (fail) → “gift” → transformation → test again → triumph → problem resolved!</td>
</tr>
</tbody>
</table>

Implications for structure

- How does the audience like to receive the message?
 - This will depend on your audience

- Do readers have expectations for where they will find certain kinds of information?
Recommendations for approaches to meticillin-resistant staphylococcal infections of small animals: diagnosis, therapeutic considerations and preventative measures.

Clinical Consensus Guidelines of the World Association for Veterinary Dermatology

Daniel O. Morris*, Anette Loeffler, Meghan F. Davis, Luca Guardabassi and J. Scott Weese

*Department of Clinical Studies, Philadelphia School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA 19104, USA
†Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada, N1G 2W1
‡Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre, St Kitts and Nevis, West Indies
¶Department of Clinical Sciences and Services, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK
§Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205, USA
©Department of Dermatology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA 19104, USA

Conflict of interest: J Scott Weese has received honoraria, consulting fees and/or has collaborated with Virbac, Vetoquinol USA and Elanco Animal Health. Luca Guardabassi has received honoraria, consulting fees and/or has collaborated with Zoetis and ICF; Meghan Davis has received honoraria, consulting fees and/or has collaborated with Ceva Animal Health; Novartis Animal Health and Hill’s Pet Nutrition; Anette Loeffler has received honoraria, consulting fees and/or has collaborated with Dechra Veterinary Products, Bayer Animal Health, Zoetis Animal Health and Ceva Animal Health.

Accepted 18 January 2017

Background - Staphylococci (Staph) are a frequent cause of infections in small animals. Multiple drug resistance (MDR) (including resistance to semi-synthetic penicillinase-resistant penicillins and methicillin), and, in particular, meticillin-resistant Staphylococcus aureus (MRSA), are problematic.

Methods - The authors served as a Guideline Panel (GP) and reviewed the literature available prior to September 2016. The GP met at least 12 times to discuss the panels and make recommendations as indicated. The World Association for Veterinary Dermatology (WAVD) provided guidance and oversight for this process. A draft of the document was presented at the 8th World Congress of Veterinary Dermatology (May 2016) and was then made available via the WAVD web site for a period of three months. Comments were solicited and posted to the GP electronically. Responses were incorporated by the GP into the final document.

Conclusions - A major goal of the document was to provide uniformity in the reporting, laboratory testing and treatment of MDR staphylococcal infections. MDR staphylococci can survive in a wide variety of settings, including hospitals and clinics, and this poses a challenge to the veterinary community with regards to the selection of antimicrobial therapy. The current document is designed to provide critical information to the veterinary community to assist in the selection of appropriate therapy while avoiding the development of MDR organisms.

Clinical Consensus Guidelines

Clinical Consensus Guidelines (CCGs) provide the veterinary community with current information on the pathogenesis, diagnosis and treatment of commonly encountered dermatological conditions. The World Association for Veterinary Dermatology (WAVD) overseeing selection of relevant topics, identification of panel members, and review of the manuscript. The final document is published in the journal Veterinary Dermatology and is available via the WAVD web site. To the WAVD web site.

© 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD, 28 pages.

DOI: 10.1111/vde.12444

Structure Example 1

- Highly structured
- Solicited
- Strict formatting, including boxed recommendations and TOC
- Process controls
- 28 pages

The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites

Ana M Misic1, Meghan F Davis2, Amanda S Tyldsley1, Brendan P Hedbrnan1, Perm Tolomeo3, Baofeng Hu4, Irving Nachamkin4, Ebbing Lautenbach3,5, Daniel O Morris6 and Elizabeth A Grice1*

Abstract

Background: Staphylococcus aureus and other coagulase-positive staphylococci (CPS) colonize skin and mucous membrane sites and can cause skin and soft tissue infections (SSTIs) in humans and animals. Factors modulating methicillin-resistant S. aureus (MRSA) colonization and infection in humans remain unclear, including the role of the greater microbial community and environmental factors such as contact with companion animals. In the context of a parent study evaluating the households of outpatients with community MRSA SSTI, the objectives of this study were 1) to characterize the microbiota that colonizes typical coagulase-positive Staphylococcus spp. carriage sites in humans and their companion pets, 2) to assess associations between Staphylococcus infection and carriage and the composition and diversity of microbial communities, and 3) to analyze factors that influence sharing of microbiota between pets and humans.

Results: We enrolled 25 households containing 56 pets and 30 humans. Sampling locations were matched to anatomical sites cultured by the parent study for MRSA and other CPS. Bacterial microbiota were characterized by sequencing of 16S ribosomal RNA genes. Household membership was strongly associated with microbial communities, in both humans and pets. Pets were colonized with a greater relative abundance of Proteobacteria, whereas people were colonized with greater relative abundances of Firmicutes and Actinobacteria. We did not detect differences in microbiota associated with MRSA SSTI, or carriage of MRSA, S. aureus or CPS. Pets in households without pets were more similar to each other than humans in non-petowning households, suggesting that companion animals may play a role in microbial transfer. We examined changes in microbiota over a 3-month time period and found that pet Staphylococcal carriage sites were more stable than human carriage sites.

Conclusions: We characterized and identified patterns of microbiota sharing and stability between humans and companion animals. While we did not detect associations with MRSA SSTI, or carriage of MRSA, S. aureus or CPS in this small sample size, larger studies are warranted to fully explore how microbial communities may be associated with and contribute to MRSA and/or CPS colonization, infection, and recurrence.

Keywords: 16S rRNA, Methicillin-resistant Staphylococcus aureus (MRSA), Microbiome, Pet, Staphylococcus, Skin and soft tissue infection (SSTI)

© 2015 Misic et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The details: writing structure

- Organization of:
 - Sentence
 - Paragraph
 - Section

- Relationship to framing and logical argument
Gopen says...

- Word order counts
- Action in a sentence is defined by the verb
- Whoever shows up first is most important
 - Subject and verb should be closely related (subject followed immediately by verb)
- Emphasis on the end (stress position)
 - End strong

Gopen. *A Sense of Structure: Writing from the Reader’s Perspective.*
Original: Although little is known about them, staphylococcal enterotoxins (SEs), which are proteins, and one of which is a select agent and bioweapon, are expected to make asthma worse because they are inflammatory.

What is the subject?

What is the verb? Is the subject near the verb?

What is the object? Where is the stress in the sentence?
Original: Although little is known about them, staphylococcal enterotoxins (SEs), which are proteins, and one of which is a select agent and bioweapon, are expected to make asthma worse because they are inflammatory.

Alternative: Given that staphylococcal enterotoxins (SEs) are superantigens known to cause acute inflammatory responses, SE proteins could worsen asthma.
Breaking the rules

Meeting expectations generates harmony

Challenging expectations strategically can add emphasis

To boldly go....

(one of the best split infinitives of all time)
Questions?