Homework 1

1. Suppose \(\Omega \) has exactly \(n \) sample points. Find the number of all possible subsets of \(\Omega \).

2. A hospital administrator codes incoming patients suffering from gunshot wounds according to whether or not they have insurance (coding 1 if they do and 0 if they do not) and according to their condition, which is rated as good (g), fair (f), and serious (s). Consider an experiment that consists of the coding of such a patient.

 (a) Give the sample space of this experiment
 (b) Let \(A \) be the event that the patient is in serious condition. Specify the outcomes in \(A \).
 (c) Let \(B \) be the event that the patient is uninsured. Specify the outcomes in \(B \).
 (d) Give all outcomes in the event \(B^c \cup A \).
 (e) Give all outcomes in the event \(B^c \cap A \).

3. Let \(A \), \(B \), and \(C \) be three arbitrary events. Find expressions for the following events:

 (a) Only \(A \) occurs
 (b) Both \(A \) and \(B \) occur, but not \(C \)
 (c) All three events occur
 (d) At least one occurs
 (e) Exactly 2 occur
 (f) None occurs

4. Prove Bonferroni’s inequality (from the Lecture notes)

5. We roll two fair 6-sided dice (each outcome is assumed to be equally likely). Find:

 (a) The probability that both dice roll 4.
 (b) The probability that at least one die rolls a 6.
 (c) The probability of that the same number comes up on both dice.

6. Consider a group of 20 people. If everyone shakes hands with everyone else, how many handshakes take place?

7. Suppose you draw a sample of size two without replacement from the set \(\{1, 2, 3, 4, 5\} \). Find the probability that an odd digit will be selected:

 (a) first?
 (b) second?
8. How many different sets of initials can be formed if the every person has one last name and
 (a) exactly 2 given names?
 (b) at most 2 given names?
 (c) at most 3 given names?

9. The numbers 1, 2, \ldots, n are arranged in random order. Find the probability that
 the digits (a) 1 and 2, (b) 1, 2, and 3 appear as neighbors in the order.

10. From a group of 8 women and 6 men a committee consisting of 3 men and 3
 women is to be formed. How many different committees are possible if
 (a) Two of the men refuse to serve together?
 (b) Two of the women refuse to serve together?
 (c) One man and one woman refuse to serve together?

11. 7 gifts are to be distributed among 10 children. How many distinct results are
 possible if no child is to receive more than 1 gift?

12. Determine the number of vectors \((x_1, x_2, \ldots, x_n)\) such that \(x_i\) is either 0 or 1 and
 \(\sum_{i=1}^{n} x_i \geq k\)?

13. A car is parked among \(N\) other cars in a row (not at either end). On his return,
 the owner finds that exactly \(r\) of the \(N\) spaces are still occupied. What is the
 probability that both neighboring places are empty?

14. We roll two fair 6-sided dice. Each outcome is assumed to be equally likely. Find:
 (a) Given that the roll results in a sum of 4 or less, find the conditional probability
 that doubles are rolled.
 (b) Given that the two dice land on different numbers, find the conditional probability
 that at least one die rolled is a 6.

15. You are given three coins: one has heads on both faces, the second has tails on
 both faces, and the third has a head on one face and a tail on the other. You
 choose a coin at random, toss it, and it comes up heads. What is the probability
 that the opposite face is tails?

16. Suppose that you continually collect stamps, and that there are \(m\) different types
 of stamps. Suppose that each time you get a new stamp it is type \(i\) with proba-
 bility \(p_i\), \(i = 1, 2, \ldots m\). Suppose you have just collected your \(n^{th}\) stamp. What
 is the probability that it is a new kind? (Hint: condition on the type of stamp.)
Extra Credit (worth one point added to your average at the end of the term; no partial credit):

Suppose n balls are randomly placed in r urns. What’s the probability that exactly one urn has k balls, $0 < k < n$? (Credit for providing an algorithm, a formula, or a proof that one doesn’t exist.)